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SUMMARY

As a Tirst step in calculating transient pressure time-histories in
rooms, due to sonic booms, a solution is sought for the pressure field
generated inside a room due to an incoming harmonic wave, incident onto
a window.

The basic problems of sound radiation and diffraction, related to this
problem, are first discussed. These are made use of to obtain a solution
in the case of a room with hard walls and normal incidence, first by viewing
the room as a terminated duct and later by the Green's function method.

The concept of the mode excitation distribution function is introduced
and is used to match the boundary conditions. This concept has been extended
for oblique incidence.  Some general properties of the distribution function
have been derived.

Extension of these results to transient pressure fields is being
presented in a subsequent report (Part 2).

INTRODUCTION

The interest in the transmission of sonic booms through open windows
inside rooms is mainly from the subjective point of view. In a general
sense, by the term open window is meant any opening left in the wall facing
the boom. Such openings, even if they are small, can transmit an appreci-
able amount of sound. The characteristics of the sound field inside the
room depend on the geometry of the window, the location of the window,
dimensions of the room and the characteristics of the boom.

The main task of this and the next report is to describe the methods
of computing the characteristics of the pressure field inside the rooms
once the characteristics of the boom are known. There are several methods
available. Usually the boom is described in terms of its pressure time-




history. One method of analysis 1s to obtain, firstly, the spectrum of the
sonic boom in the freguency domain. This can readily be done analytically
(1) if the time history is given by an analytic expression (e.g., an 'N' or
modified 'N' wave with prescribed durations, rise times, etc.), or this can
be done experimentally by analysing the signals by a spectral analyser.

Then the steady state response of each frequency component is computed to
arrive at the frequency spectrum of the response inside the room.

However, it appears that for the subjective judgement of the loudness of
the boom, it is the earlier part of the signal (first TO milliseconds, say)
which is most crucial (2). Lochner and Burger (3) have devised criteria
based on such assumptions to predict the relative loudness of various tran-
sient sound signals once their time domain description is known. Therefore
there is a considerable interest in obtaining the final response in the
time domain.,

The procedure that in practice leads to fairly accurate results consists
of obtaining the steady state response of the system in the frequency domain
and then obtaining the Laplace transform of the solution in the time domain.
This part of the report mainly describes the first part of this method: i.e.,
the steady state solution.

Another practical method is to work throughout in the time domain. This
is achieved by considering the transient diffraction pattern generated due to
the passage of the boom through a single aperture first and then to sum up
the contributions due to various apertures situated at the various image
positions of the window, created due to the presence of walls. (L, see p.3hl,
5) This method will be briefly described in the third report.

SYMBOLS
a width of the room
A amplitude of the incident wave
b height of the room
¢ speed of sound
d depth of the room
e base of the natural logarithm
E defined by equation (3.3.7)
F force




Q'

“n,n

rad

S'

Green's function inside the room

Green's function for a half infinite space
defined by equation (2.4.13)

square root of minus one

defined by equation (1.2.8)

wave number (= w/c)

cut-off wave number, see equation (2.3.4)
modal parameter

mobility of an orifice

modal parameter

acoustic pressure phasor

see equation (2.2.1)

see equation (2.2.3)

parameter for the (m, n)th mode, see equation (2.3.7)
radial distance

radiational resistance

cross sectional area of an orifice

cross sectional area of a duct

time

kinetic energy

uniform velocity
velocity in general

velocity in general

coordinates

w



§. . Kronecker delta, has a value of one if i = j and of zero if 1 # j

€. a parameter which is equal to two if j = O and is egual to Jewe

J otherwise

¢ velocity potential (velocity being the positive gradient of
velocity potential)

kl ratio of the window width to the room width

Ao ratio of the window height to the room height

0 density

o mean density

U] normalised eigenfunction

w circular frequency

Q generalised frequency (see (2.2.10))

T characteristic impedance

1.1  RADIATION IMPEDANCE OF ORIFICES IN
PLANE INFINITE SCREENS

One of the most important characteristics of an orifice is its radiation
impedance. For 'plane waves', it is defined as the force F required to move
air in the plane of the opening as a rigid piston, with normal velocity V:

Z = F/V. 1.1
rad F/ (1.1.1)
In general the impedance is a complex quantity, and it is customary
to express it as
= - 1 |

zrad R.,q — iem' s (1.1.2)
where the real part Rr is termed as the radiational resistance and the term
m' is called,by an anaiogy with a simple oscillator problem, the effective
mass of the fluid outside the opening. This mass can thus be regarded to be
attached to the piston.

For a piston in an infinite rigid baffle with a velocity at a point on
the piston equal to V(x', y', 0) the velocity potential ¢ at a point in
space is given by (see, for example, reference 18, p. 807)




¢(X,Y,Z) = %? J [V(X': v's O) G(Xa Y Z/X'a y': O)dx'dy', <l°l°3>
S

where the Green's function for the half space is given by

o Jxt,2'.0) eik/(x_x')g A (1.1.%4)
Xy ya2/x',2%',0) = 2 . 1.1
VQX—X')2 + (y=y")2 + 22

When the piston velocity is uniform, i.e. V(x',y',0) = U, a constant,
the velocity potential is given by

o(x,y,2) = i;- JSJ G(x,¥,2/x",y',0)dx"dy" (1.1.5)
and the pressure is given by -0, %%-: i.e.,
—iprU
p(x,y,z) = e J JG(x,y,z/x',y',O)dx'dy'. : (1.1.6)
S

The pressure at 2z = 0 (i.e., along the plane of the aperture) can
be written as

—iprU
P(Xoyno) = __ﬂzf"' I(Xa Y): (l»l@7>
if we define
I(x, y) = J f G(x,y,0/x',y',0)dx"ay"’. (1.1.8)
S

The total force F on the piston moving with a uniform velocity
U over the orifice is thus

—iprU
F = T j f I(X, y)dxdy. (1.1.9)
]
At low frequencies the Green's function G(x,7,0/x',y',0) is

approximated by the first two terms of its expansion in kv/(x~x')2+(y-y')2:

G(x,y,0/x",y',0) = 2 = + 2ik. (1.1.10)

| Ax-x")2 + (y=3')




A substitution in (1.2.8) and then in (1.2.9) followed by a comparison
with (1.2.2) leads to the following results

pow282
= —e—— Lo
Rrad 2me (1.1.11)
and
Po
m' = ™ J J Re (I(x, y)) dxdy. (1.1.12)
S

Further the kinetic energy is given by

T, = 1m'U°. (1.1.13)

1.2 THE TRANSMISSION OF SOUND THROUGH APERTURES
IN PLANE INFINITE SCREENS

Attempts at mathematical solutions of this diffraction problem go back
to the days of Rayleigh (6). Only comparatively recently (7, 8, 9) results
have been obtained which are valid over a large frequency range. Experi-
mental investigations have been reported for circular and rectangular plates
(10, 11, 12).

Following the argument by Rayleigh an incident wave ¢ 1s considered
to impinge upon a plane rigid infinite screen contalning an orifice of
cross sectional area S, as shown in Figure 1. If the screen had continued
across the orifice a block reflected wave ¢2 would have been obtained.

Thus if ¢l be given by

Aelkze_lwt, (1.2.1

¢l
then

¢2 - Ae—lkze—lwt

However, the passage of sound through the orifice gives rise to a
velocity distribution V(x',y',0) across the surface S, which in turn
gives rise to two further, partial velocity potentials: ¢3 for =z < 0
and ¢h for z > O:

-1
¢3(x,y,z) = T J J V(X',y',O) G(x,y,z/x',y',O)dX'dy', z <0

S (1.2.3)
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FIGURE 1

The transmission of sound through apertures in infinite
screens; the figure shows how a harmonic wave, lncident
normally onto the screen gives rise to various wave
systems.




and

+1
¢h(X:Y:Z) = E? f IV(X':y'aO) G(Xay,Z/X':Y',O)dX'dY'a 2 >0,

S (1.2.4)
the outward normal convention being followed.

The continuity of velocity potential condition across the surface
S gives

2A + ¢3(x,y,0) = ¢h(x,y,0), for (x, y) in S:

i.e.,
2A = 2¢u<xa NS O)

and therefore
¢h(xa NS O) = ‘¢3(X9 Yo O) = A, (1,2,5>

This leads to the well known result that, for extremely thin orifices,
the velocity potential across the orifice is the same as that which would
have been there due to the incoming wave in the absence of the screen.

A similar assumption, which is quite satisfactory in optics, namely
that the normal velocity at the orifice 1s the same as the incoming wave
velocity, leads to serious errors (6, p.140).

The normal velocity at the aperture, in fact, rises very steeply near
the edges. For an inviscid fluid and infinitesimal thickness of the screen
it goes to infinity at the edges. In practice, however, the viscous losses
at the edge and finite thickness of the screen make this rise considerably
smaller.

The velocity is appreciably uniform near the centre of the aperture and
the sharp rise is restricted to such a small area that the extra contribution
to the integral (1.3.4), for example, is comparatively small. Rschevkin
(11, see p.220) has estimated that an error due to assuming that the velocity
is uniform (yet distinct from free field) is about 7.5%.

Once a uniform velocity assumption is made results of the previous
section become applicable. Ingerslev and Nielsen (12, p.T) have shown how
this method can be used with some modifications to arrive at fairly good
approximations.

The parameter of most interest here, as will be explained in the next
chapter, is the acoustic mobility, M, (also known as the conductivity of
an orifice., Strictly the concept of mobility is applicable in the case
of an incompressible flow. However, for low frequency waves, fairly good
results can be obtained by using the concept. Van Bladel (13) has shown

i




the method to extend the static results to higher frequencies.

When a fluid passes through an aperture, its streamlines are con-
strained to pass through a restricted region. This leads to an increase

in the kinetic energy of the fluid. Let us denote this kinetic energy
by T2. Now the mobility of the flux is defined by the following eguation:
2
D
-1, D
T2 = gpo i (le2‘6>

where D is the total instantaneous volume flow through the orifice.

If the volume flow were uniformly redistributed over the cross sectional
area, S, and if the kinetic energy were found, we would have obtained a value
which, in accordance with Rayleigh's principle, would have been greater in
magnitude than Tg. However, it would not greatly differ from T2 due to

its stationary nature. A comparison with (1.1.13) and (1.1.12) leads to the
following approximate relations:

o 82
@]
M = ———-————m' <lm20?>
and
hnsg
f fRe I(x,y)dxdy = T (1.2.8)
S
and from (1.2.7) and (1.1.10)
J JI(x,y)dxdy = bng® E% + %%J . (1.2.9)

Relations (1.1.2), (1.1.11) and (1.2.7) lead +to the following
rad:

expression for 2
2 .
0w 1uwp
2 o 0
Zonq = S {75;; i }. (1.2.10)

These results are used in the next chapter. It has been shown by
Rayleigh (6, see p.178) that the mobility of a circular orifice is equal
to its diameter. He also showed that the mobility of an ellipse was
given by

Y-S
M=2 ;-(1 e ta t higher terms), (1.2.11)

where S is the cross sectional area and e is the eccentricity.
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For orifices of not too elongated shapes, an approximate value of the
mobility is given by that of a circle with the same area as that of the
orifice: i.e., M = 2V/5/m. For a rectangle, 1t has been suggested in
reference (12) that an ellipse, with the same area as that of the rectangle
and same ratio of major and minor axes as the ratic of the sides of the
rectangle would give an even more accurate result.

The relationship between the imaginary part of the radiation impedance
and the mobility has been used by Morfey (14) to provide formulae for
various shapes.

When the screen has an appreciable thickness the expressions for
mobility and for the sound transmission in general, must be modified.
These modifications have been dealt with by Nielsen (15) and Gomperts (16).

Transmission of sound through an aperture at an oblique incidence has
been discussed by Miles (17). A common feature to be noted is that the
dependence of the transmitted intensity, etec., on the cosine of the angle
from the normal is only in coefficients of factors of order (ka)? or
higher. It thus appears that at low frequencies we can use the same values
for mobility for sound fields incident at an angle not too obligue, as in
the case of normal incidence. This result 1s again made use of in the
next chapter.

2.1 A SIMPLIFIED MODEL

In this chapter a steady state solution, of a simplified model of the
room, is considered. The model is sketched in Figure 2a.

—_— G
Window
5 H
B Y
B
Plane wave o X1 - —%‘L
Of . . - I - : i A\EU
frequency C b c B
W l‘_‘Afa' m*"iF
Y
a
= d =1
E

FIGURE 2a
A sectional end view of the room and the front view is shown. The

plane harmonic wave is norma1ly incident onto the face GE.




The outer wall, FE, extends indefinitely on both the sides and con-
tains an open, centrally situated, rectangular window. A plane wave, of
radian frequency w® 1s normally incident on it. An expression for the
sound field generated inside the room is to be obtained.

This problem leads to several analytical problems of interest. It is
worth pursuing some of them, in order to retain generality, until a clear
physical picture of the system is obtained. Thereafter any simplifying
assumptions of interest, for example that w is very small (or to be
specific that the corresponding wavelength is many times greater than the
room dimensions a, b and d and/or many times greater than the window
dimension Ala and Agb), can be made. In particular, the assumption

that the window perimeter is relatively small compared with representative
wavelengths is especially relevant, since the predominant frequencies
encountered in the sonic boom spectrum are, in general, low in this sense.

The problem is that of seeking a solution to the wave egquation for
the given boundary conditions. These conditions would be some sort of
impedance conditions on all the walls and continuity conditions across
the window.

A brief account was given in the last chapter of the result that in
the case of a thin infinite screen (in the absence of a backing cavity,
etc.) the potential at the window due to an incoming, normally incident,
wave 1s the same as the incoming potential. This result is no longer
valid in the particular problem of interest here because the room is
capable of reradiating back into the open, and the assumption of symmetry
across GE 1is not valid.

Looking from another point of view the problem is analogous to that of
a Helmholtz resonator which is externally excited. This analogy shows
that there would be a significant frequency dependence of the system. A
behaviour similar to the cavity resonance may well be expected at the right
sort of frequencies. This simplified model is modified by the fact that
higher order modes will be set up in the room to a varying degree and the
usual formulae for obtaining the lumped circuit elements of the resonator
will not be satisfactory, except at very low frequencies.

In what follows it has been tacitly assumed that the magnitude of the
velocity across the window, as shown in Figure 2, is already known. A
simplified calculation based on this assumption is first made. The room
is assumed to be closed and the window is replaced by a piston possessing
the same velocity as the actual velocity in the initial problem.

In section (2.2), the field generated inside a room due to a rigid

piston, moving with a uniform velocity, is computed. Rigourously, this
piston should have been a flexible piston. The method used here can be

10




extended to a flexible piston problem. However, the rigid piston approach
itself is sufficient to bring out clearly the relevant parameters of the
system.

The procedure followed in (2.2) has one advantage. The final expression
obtained takes an account of the absorption in the room. However, the
initially assumed velocity is left indeterminate. Even if this velocity
were to be known it is difficult in practice to compute accurately the time
domain behaviour from the expressions such as (2.2.12). Therefore &
different method is followed in (2.3) which regards the room as a terminated
duct.

2.2 PRESSURE FIELD DUE TO A PISTON,
SET IN A WALL, IN A ROOM

The room shown in Figure 2 is considered. However, the window is
replaced by a uniform rigid piston executing a simple harmonic motion with
-iwt

velocity given by Ue . Let us choose the origin at one of the corners.
Also let the piston cover the area enclosed by -%(l - Kl) < x 5-%(1 + kl}

b .
and E(l - ) £V € =(1 + A Consider now a small elemental aresa, on

2 2 2 2)'
the piston, dx'dy', centered at (x',y'). This area acts as a source

whose strength <.1(;>c,y,z)e—1°°t is given by a(x,y,z) = Sp Us(x-x")8(y-y")&(z),
where

Sp = dx'ay'. (2.2.1)

-iwt

The acoustic pressure p(x,y,z)e satisfies the following eguation

(4, see p.313):

2

1 0 - —-iwt ] ~-iwt
I“VZ - ____—.._] p(X’yaz>e w = ~p e [q(X,y,Z)e w]« <202m2>
- c2 at2 o ot

In general both p and g can be expressed as series expansions in
the normal functions mebgyﬂ):

a(x,y,2) = ) Q (x,7,2). (2.2.3)

R,
g,m,n = 0 Lmn " 2mn

The functions wzmn are normalised orthogonal functlons so that

Q' = J J JQ(X9Y9Z)wzmn(X:Y9Z)dXdde'

Lmn
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For the present case

o = USP ¥, (x',y',0). (2.2.4)

Alsoc one can express the pressure as

Lo

p(xaynz) = z
2.,m,n,=0

v, (x,y,2). (2.2.5)

avaMM

The wzmn's’ in fact, satisfy the homogeneous equation. It follows that
2.2 _ 2
VY, (x,7,2) = —Qﬁmanmn(x,y,Z)- (2.2.6)

Substituting this equation in (2.2.2) leads to

.2 o 2 - ,

8y = ~iPC© Q- [w° - lenj’ (2.2.7)

and therefore
. v,  (x',y',00¥, (x,7,2)
. -1t
dp(x,y,z) = —1p02w ax'ay! ve tY ) i 5 5 A (2.2.8)
Lmn w -
Lmn

When the walls are perfectly rigid, it can be shown that

P = | Ann s I oos B o 212
Lmn Jond a b d
and
ty = ¢ [0+ @7+ @],
where

es = 2 if § =0 and &5 = V2 if j=1,2, ...

If, however, the walls are not abgsolutely rigid and yet not too

absorbent it can be shown (reference 3) that the ngn's above become

12




complex. Thus

Yo T % T Memm

. Amye , (mmy2 , (Bmy2 -
oy = o [0+ @2 4 @127,

N C €08 + Emdy + €n%y,
Hoon © Babd | 2 5 2 |

where aX represents the total absorption of the x-walls, etc.

Thus neglecting ug on the assumption of small damping,
g o p ping

2 .
c w ~1lwt
dp(x,',y',z') = EEEE dx'dy' Ue
Lrx! mrx’ nny nnz
o cos cos cos =% cos —=
% z a a b
. 5 2
% ,m,1%0 [émenUan - i(w” - wzmn)]

2€2€2
Ez m

(2.2.10)

(2.2.11)

The desired result is obtained when this expression is integrated

throughout the area of the piston:

a b
(1) (1)
P(X:Y:Z) = J f dp(Xa'ay':Z')
a b
5(1=2)) 5(1-1,)
Lmx mny nmz 8262
@ S 1 p 1]
_ pc2w —iwt COS— = cOs — = cos Fl g2 m L mmx LN A
=E=— Ue ) ab a b
d 2.,m,n=0 2w u - 1(w2 - w2 ) S
2 fmn” Lmn fLmn
. cos Lrx cos mnry nmz
pe”w ., ~iwt € % ,m a b d
= U ) (2.2.12)
d 2,m,n=0 [2w u 1(w2 - w2 5]
> 2mn Lmn fmn
where
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sin®_ sin ©
m n

e 22 (-1 )/

o = XA (m,n even)
[l L m 12 em. en
=0 (morn odd) (2.2.13)
and
Hhkl Dﬂkg
6, = 3 o, 5 (2.2.14)
Each term in the series (2.2.12) shows a resonance behaviour when
w = W) mn and thus peak amplitudes are reached for that particular mode,
subject, of course, to the spatial variation of the numerators with
(x,7,2).

2.3 TERMINATED DUCT APPROACH

For the original problem stated in section 2.1, assume that the
velocity potential of the incoming wave is given by the equation

ikz -igt
o1 = Ae T (2.3.1)

where k is the wave number (= y/c). The solution is obtained by a
combination of the solutions of the two problems described below:

PROBLEM A’ PROBLEM B’
- I = Zy f— (kZ;] <<]
e l Infinite duct
//Window B Flexible
— — Window r piston
l
Incoming
wave FIGURE 2b

The figure shows two simplified problems whose individual solutions can
be combined to obtain the solution of the problem presented in Figure 2a.
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Problem A is that of an infinite duct with a flanged opening on which
is incident a plane wave, and problem B is that of a duct excited by a
flexible piston, giving rise to waves which pass down the duct on one side
and pass through the window out into the open on the other side. The
solution of these problems in turn is dependent on two classical problems:
(i) radiation from a source of sound in a duect; (ii) diffraction of sound
through an aperture in a screen.

The analytical task is considerably reduced if the long wavelength
assumption be made. This assumption may give rise to considerable errors
in the region very near the edges of the window. However, far from these
regions, the analysis is expected to be reasonably accurate. Also, if
desired, this assumption may be removed at a later stage, and results re-
calculated for higher frequencies, along the lines indicated in section 2.k,

If the outer wall had continued in the region occupied by the window,
a block reflected potential, ¢2, would be generated:

¢2 - Ae—lkze—lwt.

This would give rise to a potential of amplitude 2A across the surface
of the baffle facing the wave. It is then argued that, as far as the duct
is concerned, the effect of the external perturbation can be represented by
a potential perturbation, of amplitude 2A, applied at the window. This
perturbation would give rise to a system of acoustic waves represented by

- mnx nmy % -ilwt \
¢3 2A % . o GOS ——. cos == cos km’nze R (2.3.3)
-]
2 mmw2 nmw.e
* = - (E)F - EE . .3.
o= /2o (@2 @D (2.3.4)

It has been assumed that the walls are rigid and the origin is
situated at the corner. The normalizing parameters, o} , satisfy

the following condition: m,h

mrx nry _ coBra a ‘
) Ou,n CO5 5 cos = =1, (1f 5(1 - 2ay) < x< 5(1+ X;) and
m,n
b b
§(l - >\2) <y < ‘é‘(l + XE)),
and

0 (if otherwise). (2.3.5)

15




Thus at z = O, adds up to 2A over the window and to zero elsewhere.

¢
3
This condition 1s used to evaluate o ne Multiplying both sides of (2.3.5)

1]
by cos 225 cos E%X and integrating, leads to

a b
b a 3(1+4,) 2(142,)
2 mrx 2 nrny - mmrx nmy
f J omancos =, ©os —E—-dxdy f f cOs =—_—Ccos — dxdy,
0O 0 a b
-2—(1-—>\l) 2(1-12) (2.3.6a)
and therefore
~ sin 8 sin 6
_ m/2 b/2 m n
un = (2 - 6O’m)(2 - 60,1’1)(_1) (-1) M =5 5 , (m,n both
m n even)
=0 if either m or n is odd, (2.3,6h)
where
. - mﬂxl . - nnAe
n 2 ? n 2 ?
and
Go,m =1 1fm =0,

0 if m # 0, etc.

In the main problem, equation (2.3.3) by itself will suffice as a
solution for the wave equation inside the room if it so happens that
3¢3/az equals zero. In general this is not the case and hence a bzlancing

solution ¢), which represents waves radiated by a flexible piston, is
required. These waves in turn create an additional potential ¢5 outside
the window: i.e., for =z < O. ¢, once again satisfies the boundary

conditions at the side walls. Thus it can be expressed as

mrx nry . -
) = Z R cos L gos HL L81n k¥ gz + Q cos k¥ =z,
L m,n a b m,n m,n m,n” -
©om,n
(2.3.7)
Q in general is complex and has a value which takes into account

m,n
the attached mass and dissipation at the window. Its value can be estimated
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reasonably well by making use of the formulae for radiation impedance
derived in the last chapter.

From (1.3.9) the radiation impedance at the window is

V w2 ip w
7 - SE po _ po
rad 27e M )

The radiation impedance asgviewed by the duct with a cross sectional
area Sl = gb) is Zrad(31/82> because of the 'transformer'! effect of

the area (11, p.220). Briefly, this effect is due to the fact that while
going from the window to the duct the velocity, following the continuity
equation, reduces in magnitude, while the pressure remains relatively un-
changed, consequently increasing the force. The specific acoustic
impedance (p/v) at the entrance of the duct is given by (l/Sl) times the
value of the radiation impedance: 1i.e.,

o W io w |

o 0

Cos0 Sl [_ 2re M : (2.3.8)

The specific impedance can also be computed from (2.3.8).

In the (m, n)th mode the pressure amplitude along a plane very near
the entrance of the duct is given by

pm,n - impo[d;-]z-@
= iuwp Rm,n cos —= cos E%X LQm’ﬁ]; (2.3.9)
and the velocity by
Vﬁ,n = Eg§]z+0
=k R, cos == cos =L . (2.3.10)

Equating the two expressions for the specific modal impedance gives
rise to

| w2 ip w iwp Q
5 s _ Po - 5 m,n
1 k¥
m,n

17



and therefore

= k¥
Qm,n

A more accurate estimate of Qm N

the next section.

The next task is to determine R .

¢ 3%),
rigid [égg + —BE] =

m,n

ab E% + ;%] .

2

2

(2.3.11)

can be made, and this is done in

Since the wall at =z = d 1is

0 at all x, y. Hence, from (2.3.3) and (2.3.7),

2A o sin k¥ 4 =R (cos k* 4 - Q, , sin K aj.
m,n m,n m,n m,n ,n m,n
Therefore
QA'Om.n sin k; a4
R = 2 2 — (2.3.12)
m,n  (cos km,nd - den sin km,nd)
and hence
= +
cos k¥ (d - z)
= 2A Z g cos £ cog 211 .
m,n a (cos k* d -~ @ sink¥® 4d)
m,n m,n m, 0 m,n
Replacing the time factor, we see that an incoming wave, Ae~lwt, gives
rise to a velocity potential inside the room of
-1lwt mmx nny cos k; n (d - 2)
= e 2 z . (2.3
Qe 24 ] “m,n ©°° €08 % os k¥ _a - Qm sin k¥* d (2.3.13)
men 1 m,n
The incoming pressure is
. ~ipt
Py = 1prAe )
and the velocity 1is
v, = ikAe—lwt.
i
Inside the room the pressure is
cos k¥ (a - z2) ~1igt
p = (iwp )2A Z m,n ©°° mzx cos ngy 0s k?’nd - sin k¥ 4 *
© s ¢ m,n Qm,n ,n
(2.3.14)
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the axial velocity is

sin k¥ (d - z)

- mrx nry m,n _ o-lwt
= 24 Z Om,n m,n €O 75~ GO9S T Tos K 4§ - Q _sin k* @ d i
m,n m,n m,
(2.3.15)
and the specific impedance for the (m, n)th mode is
L = (pe) =5 cot kX (d - 7). (2.3.16)
m,n o ' k¥ m,n

m,n

The ratio of the pressure in the (m, n)th mode, at the centre of the
window, to the incoming pressure p; is given by

(p ) 20
(ms? ol m’nt T (2.3.17)
Py " “m,n a m,n

This equation shows a highly modified form of the quarter-wavelength
effect.

2.k GREEN'S FUNCTION FORMULATION

The approach in (2.3) was essentially based on a physical interpretation
of the problem. Its success was based on the fact that in the time domain
it led to a transform o be described in the next report) which was easier +o
interpret in terms of a multiple-reflection description.

It was felt necessary to formulate the same problem on a more exact
basis to understand the implications of the approximations more thoro&ghly&
An obvious method was the integral equation approach based on Green's
functions. This method was also felt to be useful when it came to include
room-absorption.

However, the usual formula for rooms

v Lre® 22,2 Lmx nry mrz
g(x,y,2/x",y",2" Z “abd Sqfmtn COS - €OS g cos —= X
Lrxt mry ' nrz' -iwt
cos ——— cos —3— ¢ — e
5 5 (2.4.1)
2 - W
fmn




led only to a modified form of the approach in 2.2,

Luckily, a discontinuous form was found in Morse and Feshbach
(reference 18, p.1L434) which leads to a result similar to 2.3.

In Figure 2a let (x', y', 0) be an arbitrary point on the window

3o(x",y',0)
oy . By

Green's theorem, the potential ¢5 generated by the window in the

surface. Let its axial velocity be described by

infinite half-space, z < 0, due to the velocity distribution in the
window is

(bS(X:yaZ) =%—T; Jf‘ai(‘}'{"‘g;z[_"z‘g')‘ G(X:ysz/x'ay'ao)dx'dy' (Z < O) (2.11_32)

where G is the Green's function for the half-space, given by

: geik/fx—X')z + (y=y")2 + (z-27)?
6(x,y,2/x",y"5") = © (2.L.3)
A + (3=y")2 + (z-2')"

and the Green's function for interior of the room to be used is

(2 -6, )2-5_ )

-
X z/xV,y',z?!) = —— 72 2
g(x,y,2/x",y",2") = ) FE
m,n m,n m,n

, y " Jcos k¥ z' cos k¥ (d - z) || z<z?

mrx nny mrx any m,n 0

cos == cos —$— cos —= cos —

cos k¥ z cos k¥ (g - z') 7zt <z

m,n m,n

(Q,A.QB

Therefore the velocity potential, ¢l’ inside the room is given by

| -1 3
bo(x,y,2) = o f f 3%-(x',y',0) g(x,y,z/x',y",0)dx'dy". (2.4.5)

It follows from (2.4.4) that

e mrx' nry

1 v = e——— — — <

glx,y,2/x',y',0) - mZn (2 ao’n)(e aO’ )i bn(d,z) cos ——— cos —*— >
5

cos EEE cos E%Z R (z > 0), (2.L.6)
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where

cos k¥ (4 - z)
m.n

- s
fm_,n(d - z) k¥ gin k¥ 4 (2.4.7)

’ I,

|

If the region that the window occuples is denoted by s, and 1f the magni-
tude of the window area is given by S (= abklkg), it follows from (1.2.9)
that

f J f f G(x,y,0/x',y',0)ax'dy dxdy = hﬂSg (ﬁ + %%) (2.4.8)

S S
W w

For the region to the left of the window, given by =z < 0, an incoming
wave of potential ¢l’ = Aelkz, gives rise to a block reflected potential
¢2 (= Aeulkz), due to the presence of the baffle. The velocity set up in

the space occupied by the window gives rise to an additional potential, ¢ .
For the region occupied by the room, i.e. for 2z > 0, the velocity dis-
tribution at the window creates the potential ¢ The condition for the

continuity of velocity, across the window, has already been used. The con-
dition that the potentials are continuous across the window is expressed by
equating the limiting values of the potentials on both the sides; i.e.,

28 + ¢5(x,y,0) = 9, (x,7,0)  (for (x,y) lying in s ).
(2.h.9)
Therefore from equation (2.4.2) and (2.4.5),
op = -1 o9 (x',y" T ( 'yt.0) + g L. O)— § 3
= ’H_‘,E' 5’; X .Y 90) I_G Xay,O/X »¥ ' 50 g XSySO/X TN ,_[ ax' dy
(for all =x,y, in s_). (2.4.10)

W

g 1is already expressed in the form of a sum over the indices m and

n. Let %%(x',y',O)QA and G(x,y,0/x',y',0) be also expressed in a

similar fashion:

3yt ot = mmx nmy' i
8Z(X ,y',0) min Vm,n cos —_— cos —%— , (2.h.11)
3
¥ ?
24 = ] (240 ) cos T cos PR, (2.1.12)
m,n ?

21




. - mrx' nry' mx nmy L
G(x,y,0/x",y',0) ) Gm,n COS ——— cOs ~—— cos —= cos ~p* (2.4.13)
myn :
In (2.4.12) a property of o, , has been used. This expansion would
H
lead to the correct value of 2A over the region S Gm a is also found
2

by choosing the true value of G over thé region St For the rest of

the region the choice is arbitrary and it is most convenient to take it +to

be zero. G can be evaluated by multiplying both the sides of (2.4.13)
) Bt ¥
by cos mzx cos nwg cos mgx cos ngy and integrating over the area twice.
Thus
(2 -8 )% (2-5_ )2 |
G = 021 22 G(x,y,0/x',y',0)
m,n 2
S 8 8 _
W
9 1
cos EL-T—Tgi---cos nng cos mzx cos ngy ax'dy ' dxdy (2.Lh.1h)

A substitution of (2.Lk.12), (2.4.11), (2.4.13) and (2.4.6) in (2.4.7)
leads to

m,n m,n nrx nmy  _ g
+ 2 2 - ! 0
mzn 2Aam’n f& (2= m)(z—ao n) cos /T cos ¢ mz [m,nfm,n<Q3 )
s 2 ’ ’
cos ETE . ngy . (2.4.15)

This expression is valid for all (x, y) :in s+ It follows therefore

that

2A0

- m,n .
Vm,n = Gm n(ab) (2.4.16)
f (4,0) - NG

-]
m,n —éo,m)(E—éo’n)

A substitution of (2.4.11) and (2.4.6) in (2.4.5) 1leads to an
expression for ¢:

mnx oy |
mn fm,n(d’ z) cos —— cos == (2.h.17)

or
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. mrx oy fm,n(d’ z) E
) ~’mzn ZAOm,n cos —/= cos — Gm n(d,b) ?
’ T,n (B0 - s T ) |
> o,m 0,1 j
(2.4.18)

It follows, from the definition of fm n(d, z) ((2.4.7)), that ¢
can also be expressed as ?

cos k¥ (4 - z)

¢ = z 2Agm,n cos Egﬁ cos ngy cos kg:zd - Qm,nsin kzsnd
where (2.4.19)
k;,n(}m,n(ab)
Uon T Talees. )(E5 ) | (2.4.20)

o,m o,n

The correspondence of the equations (2.4.19) and (2.3.15) is striking.
Equation (2.L4.20) can be used to obtain a more accurate value of Q_ _.

From equations (2.4.1L4) and (2.4.20) it follows that m,1
()
= —_ — - 1 -t

Qm,n S2 (2 60,m>(2 6O’n) f J J f G<X9J90/X 2 9O>
s s
W W

T v
cos mﬂz cos nﬁ% cos mzx cos ngy dx'dy'daxdy. (2.4h.21)

If in this equation, the averaged value of G Dbe substituted and if the
integration be carried out,

]
. ]Té—a )(2—60,11)} (2.h.22)

_ 1, ik
Qm,n - kfa,n(ab)(M T o " i oom
or
- 2
_ 1, ik J 1 m,n GL
Q‘m,n a k;,n(ab)('ﬁ * EF) [(Alxg) (2-50 m)(e-ao n)J ’ (2.k.23)

It can be readily verified that this agrees with the value obtained
in section (2.3) for m =0 and n = 0. A better value for Q, , can be

2
obtained by carrying out the integration in equation (2.4.21). TFor the

purpose of the present work, equation (2.4.23) is quite satisfactory. The
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expression (2.4.19) will be made use of to obtain the time domain response
to a sonic boom signal.

3.1 MODE DISTRIBUTION FUNCTIONS: INTRODUCTION

The necessity for the distribution functions arises when the boundsxry
conditions of a duct with a cross sectional area, S', are to be matched along
an orifice with a cross sectional area S. The distribution functions rep-
resent a suitable distribution of the disturbance along S'. When the
disturbance incorporates a phase variation, the distribution functions
become complex to account for the phase variation. This will be observed
in (3.3). Certain properties of these functions are derived in (3.4).

3.2 DISTRIBUTION FUNCTION FOR A WINDOW AT A CORNER

d

O i

bAs

-;—-——al1—-—-a—- *
Ol 3 _______,_l

FIGURE 3

-
X

Front view of a room having a window in a corner.

When the window is not centrally situated, we can apply exactly the

same procedure as in 2.3 to obtain o n's. Once these are obtained, the
>

rest of the procedure remains unaffected.
To illustrate the nature of the results to be expected, consider the

window shown in Figure 3. Its dimensions along x 1s aA, and along
v is bng one of its corners is at 0. It i1s required t%at

2k




Z O p COS E%ﬁ cos E%Z 1, for x,y in the window,
m,n (3.2.1)
0, for x, y outside.

Therefore, integrating over the whole area, after multiplying through by

nrx nn .
cos —= cos _TSC , gives
ab ¢ gin mmi sin nwi
2.1 abi. A 1 2
- — >
(2 aoam)(e Go,n) 172 wrh nmh,
and
. sin mﬂxl sin nnkz
Om,n = AlAQ (Z‘GO,m)(2_Go,n) [mwkl ] ( nwxg J : (3.2.2)

It can be noted that, in general, both m and n can be both odd
and even.

3.3 DISTRIBUTION FUNCTION FOR OBLIQUE INCIDENCE

FIGURE 4
Case of an obliquely incident wave

Figure 4 shows an obliquely incident wave on a window which is centrally
situated in a wall of a room which has the same dimensions as the room shown
in Figure 2. Let the direction of wave propagation make an angle 6 to the
horizontal, as shown.

The 'terminated duct' approach of 2.3 is found useful here. Thus the
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incoming potential can be written as

¢1 _ Aelkz cos © e—lky sin © (3.3.1)
and the 'block-reflected' potential as
, -ikz cos 6 -iky sin
§, = heTTEE CO8 BTy sin 6 (3.3.2)

This produces a driving potential (see 2.3), at z = 0, given by

dy

~iky sin 6
(¢l * ¢2)z=0 = 2he v . (3.3.3)
Now the o, n's are required to satisfy
>
eTIEY sin 6 ) o, COS Egé cos E%X , (x,y) in the window,
2
= 0, (x,y) outside the window. (3.3.4)
Thus
b a
2(l+A2) §(1+Al)
ab %m,n -iky sin © nry nw
555 )(2:6 y T J f e cos == cos ~%X dxdy
o,m o,n 2(1_A NV
2 2 2 1
b
sin 6 §(l+K2)
= (-1) /2 - m (a 1) f e—lky sin ecos ngy
m
b
5(1-1,)
m even;
=0, m odd. (3.3.5)
Now if k2 = =k sin 0,

26




b b
E(l—kg) '§(l+K2) ey
e—lky sin ecos nny &y = e 2 cos B 4
b b
b b
2(1+x2) —2—(1—)\2)
b
ikgy «§(l+ 2)
- e T nry . nny
5 ( 5 S —E—-+ 1k2 cos -Er%
(H_ - 2 b
- b 2 E(l— 2)
1k2b ) |
= 28 ° cos — Eﬂ-cos 20 sin il - k. sin kzbkg cos ﬂﬂkgl
A2 2 R 2 2 T 2 2
b 2 -
n }lTT k b l’.l'lT)\2 kgbl Il"ﬂ’)\z L
+ 1 sin 5 1—5~81n > cos 5 - k2 cos ) sin 5 [
N (3.3.6)

From equations (3.3.5) and (3.3.6)

o = 0, if m be odd,
m,n
/2 sin em
= (2 - 6o,m) Al(—l) —~—§;— En (say), if m be even, (3.3.7)
where
~1bk sin 8
e 2 (_l)n/2 e klbk2 sin 6 _ nﬂkg
B, = nrp S e
("EJ - (k sin 8) -
XbX. sin 8 nwA,. -
. . 2 2
- k sin 6 sin % | cos 5 j , 1 even
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-1ibk sin 6

. n+l 2 : .
_ 2i(-1) - e an (kbk2 sin GJ . nmi
(9%2- (k sin 6)° b 2 2
kbk2 sin © nwa
- k sin 6 cos ( 5 } sin 5 , 1 odd.
(3.3.8)

It can be seen that En’ and consequently Opn? is complex. For
2

a centrally situated window o n is zero for m and n odd in the case
3

of normal incidence. However, for oblique incidence this ceases to be
so and consequently more modes are generated.

If the direction of propagation is obligue with respect to both the
axes, the result is

o = EE, (3.3.9)

where Em is defined 1n a fashion similar to En.
3.h SOME PROPERTIES OF DISTRIBUTION FUNCTIONS

A few general properties of the various cm'n's encountered so far
are derived here. ?

Consider firstly the central window case:

mrx nny _ s B a b - <
) O €05 5 008 = =1, ir 5(1 xl) < x < 2(l+>\2) and 5(1-3,) < ¥
b
= 0 outside. (3.4.1)
Except when Al or Ag is unity, if x = 0, y = 0, then
Y O = O (3.h.2)
and if x=~§-, y =g— , ‘then
2 2
I (-1)™/2(-1)?/ - 1. (3.4.3)
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Choose also

UTX Ty _ 1, in window .
mzn m,n a 9% Tp {O, outside window} - (3.hh)

Multiply both sides of equations (3.4.4) and (3.4.1) to get

1

mrx UTX Ty nmy
Y (e} c08 —=—— 08 —— COS - C0S == =
Lol o a 2 b b %

m,n v
W,V m,n sl U,

Fo (3.4.5)
Integrating over the area and using the orthogonality property results in

o
m,n

) GBSy T Mo (3.4.6)

o,m o,n

Consider now the distribution function for oblique incidence:

ik,.y
mnrx nmy 2 . .
Z o cO§ ——— COs ——* = e in window,
m,n a b
=0 outside,
Therefore
ik
% mrx nny oy . .
Z o} cos —= cos —— = e in window,
m,n a b
=0 outside.

Multiplying and integrating as before resulis in

2
) [0 al
m,n (2—60 m)(e-sO

2

) = Alkg.

Nl

3.5 COMPUTATION OF o
m,n

A computer programme has been developed to compute o n's for
various window sizes. ?

Some of the results obtained are illustrated in Figures 5, 6 and 7.

Figure 5 shows some of the o _'s for window sizes given by X, = X

~
0.1.
m,n 1

o
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Only two sets are shown for the sake of clarity.

In Figure 6, the absolute values are plotted for several values of n.
The characteristic window ratios are 0.4 and 0.5. All (10, n) modes are
seen to be zero because of the particular value of Al chosen.

Figure 7 1s a normalised plot of the absolute values of several window
sizes. It can be seen that when the window occuples a substantial part of
the cross sectional area, the lower modes are more predominant and values of
the distribution function reduce rapidly as we go to the higher modes,
whereas, for windows which occupy very small cross-sections, the values are
relatively level. Thus a large number of higher order modes have to be
taken into account to build up a realistic description.

CONCLUSIONS

The ultimate aim of the work is to formulate an analytical method
which 1s capable of predicting the characteristics of the transient pressure
field inside a room once the characteristics of the incident boom are known.

In this part of the report, attention was focused on the steady state
response. A simple model of the room was used to obtain the pressure
field inside a room with hard walls.

The sound field inside the room, shown in Figure 2a, due to an incoming
harmonic wave of amplitude A is given by (2.3.15). The spatial variation is

through the terms in x, y and z. The distribution functions O n depend
2

on the relative size of the window and the position of the window. It is
shown in 3.3 that for an oblique incidence these functions become complex.

The parameter Qm n? which represents the effect of both the inertia and
>

dissipation associated with the window has been estimated in 2.3 and a
better value for it is found in 2.4, as seen in 2.4.20. The contribution

of each mode goes to its maximum when cot k¥4 = Re(Qm n)' This is the
E]

"generalised' quarter wave-length effect, as can be seen by setting m = n

= Re(Qm:n) = 0.

For every mode there is a frequency below which k; N becomes imagi-
>

nary. The contribution due to the mode, at a point, then alters considerably.

Detailed calculations in this case have not been presented because in
further work the expressions have been converted into the time domain and
explicit expressions have been obtained which enable the detailed calculations
to be made directly. These calculations illustrating various representative
cases are to be presented in Part II of this report.
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